Discrete Second-order Probability Distributions that Factor into Marginals
نویسنده
چکیده
In realistic decision problems there is more often than not uncertainty in the background information. As for representation of uncertain or imprecise probability values, second-order probability, i.e. probability distributions over probabilities, offers an option. With a subjective view of probability second-order probability would seem to be impractical since it is hard for a person to construct a second-order distribution that reflects his or her beliefs. From the perspective of probability as relative frequency the task of constructing or updating a second-order probability distribution from data is somewhat easier. Here a very simple model for updating lower bounds of probabilities is employed. But the difficulties in choosing second-order distributions may be further alleviated if structural properties are considered. Either some of the probability values are dependent in some way, e.g. that they are known to be almost equal, or they are not dependent in any other way than what follows from that the values sum to one. In this work we present the unique family of discrete second-order probability distributions that correspond to the case where dependence is limited. These distributions are shown to have the property that the joint distributions are equal to normalised products of marginal distributions. The distribution family introduced here is a generalisation of a special case of the multivariate Pólya distribution and is shown to be conjugate prior to a compound hypergeometric distribution.
منابع مشابه
Determination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کاملNovel Bounds on Marginal Probabilities
We derive two related novel bounds on single-variable marginal probability distributions in factor graphs with discrete variables. The first method propagates bounds over a subtree of the factor graph rooted in the variable, and the second method propagates bounds over the self-avoiding walk tree starting at the variable. By construction, both methods not only bound the exact marginal probabili...
متن کاملProbability Measures with given Marginals and Conditionals: I-projections and Conditional Iterative Proportional Fitting
The iterative proportional fitting procedure (IPF-P) is an algorithm to compute approximately probability measures with prescribed marginals. We propose two extensions of the IPF-P, called conditional iterative proportional fitting procedures (CIPF-P), so that, additionally, given conditional distributions are taken into account. This modification is carried out by using the geometrical interpr...
متن کاملBounds on marginal probability distributions
We propose a novel bound on single-variable marginal probability distributions in factor graphs with discrete variables. The bound is obtained by propagating local bounds (convex sets of probability distributions) over a subtree of the factor graph, rooted in the variable of interest. By construction, the method not only bounds the exact marginal probability distribution of a variable, but also...
متن کاملA continuous approximation fitting to the discrete distributions using ODE
The probability density functions fitting to the discrete probability functions has always been needed, and very important. This paper is fitting the continuous curves which are probability density functions to the binomial probability functions, negative binomial geometrics, poisson and hypergeometric. The main key in these fittings is the use of the derivative concept and common differential ...
متن کامل